Интеллектуальные информационные системы

Обобщение интегральной модели путем учета значений выходных параметров объекта управления


Выходные параметры

– это свойства объекта управления, зависят от входных параметров (в том числе параметров, характеризующих среду) и связанны с его целевым состоянием сложным и неоднозначным способом:

Задача идентификации состояния АОУ по его выходным параметрам решается подсистемой идентификации управляющей подсистемы, работающей на принципах системы распознавания образов. При этом классами распознавания являются выходные состояния АОУ, а признаками – его выходные параметры.

Подсистема выработки управляющих воздействий, также основанная на алгоритмах распознавания образов, обеспечивает выбор управления

, переводящего объект управления в целевое состояние
.

При этом последовательно решаются следующие две обратные задачи распознавания:

во–первых, по заданному целевому состоянию

 определяются наиболее характерные для данного состояния выходные параметры объекта управления:

во–вторых, по определенному на предыдущем шаге набору выходных параметров

определяются входные параметры
, с наибольшей эффективностью переводящие объект управления в данное целевое состояние с этими выходными параметрами:

1. Таким образом, определенная ограниченность подхода Шеннона, рассмотренная в данной главе, преодолевается в семантической информационной математической модели СК-анализа, основанной на СТИ. В рамках СТИ установлено, что одной из наиболее перспективных конкретизаций апостериорного подхода, является подход, предложенный в 1960 году А.А.Харкевичем [196]. Для моделирования процессов принятия решений в рефлексивных АСУ активными объектами предложено применить многокритериальный подхода с аддитивным интегральным критерием, в котором в качестве частных критериев используется системная мера семантической целесообразности информации. При этом количество информации оценивается косвенно: по изменению степени целесообразности поведения системы, получившей эту информацию. В результате получения информации поведение системы улучшается (растет выигрыш), а в результате получения дезинформации – ухудшается (растет проигрыш).
Известны и более развитые семантические меры информации [148], основанные на интересных и правдоподобных идеях, однако они наталкиваются на значительные математические трудности и сложности в программной реализации, поэтому их рассмотрение в данном исследовании признано нецелесообразным.

2. Предложенная математическая модель обеспечивает эффективное решение следующих задач, возникающих в рефлексивных АСУ АО:

– разработка абстрактной информационной модели АОУ;

– адаптация и конкретизация абстрактной модели на основе информации о реальном поведении АОУ;

– расчет влияния факторов на переход АОУ в различные возможные состояния;

– прогнозирование поведения АОУ при конкретном управляющем воздействии и выработка многофакторного управляющего воздействия (основная задача АСУ);

– выявление факторов, вносящих основной вклад в детерминацию состояния АОУ;

– корректное удаление второстепенных факторов с низкой дифференцирующей способностью, т.е. снижение размерности модели при заданных граничных условиях;

– сравнение влияния факторов, сравнение целевых и других состояний АОУ.

3. Показано, что предложенная методология, основанная на системном обобщении теории информации, обеспечивает эффективное моделирование задач принятия решений в РАСУ АОУ.

4. Доказана возможность сведения многокритериальной задачи принятия решений к однокритериальной, показана глубокая внутренняя взаимосвязь данной модели с математической моделью распознавания образов. На этой основе введено понятие "интегрального метода" распознавания и принятия решений и, после анализа и переосмысления основных понятий теории информации, предложена базовая математическая модель "интегрального метода", основанная на системной теории информации. Показано, что теория информации может рассматриваться как единая математическая и методологическая основа методов распознавания образов и теории принятия решений. При этом распознавание образов рассматривается как принятие решения о принадлежности объекта к определенному классу распознавания, прогнозирование – как распознавание будущих состояний, а принятие решения об управляющем воздействии на объект управления в АСУ как решение обратной задачи прогнозирования (распознавания).

5. Проведено исследование базовой математической модели на примере решения основной задачи АСУ – задачи принятия решения о наиболее эффективном управляющем воздействии. Осуществлена декомпозиция основной задачи в последовательность частных задач для каждой из которых найдено решение, показана взаимосвязь основной задачи АСУ с задачей декодирования теории информации.


Содержание раздела